

An Intvoduetion +o Device Drivers

Role of Device Drivers

The role of device driver is providing wechanism, not policy
\YJ

/_\’ The distinction between mechanism and policy is one of the best ideas

What iz the behind the Unix design. Most programming problems can indeed be split
ditference between into two parts: “what capabilities are to be provided” (the mechanism)
mechanism ond and “how those capabilities can be used” (the policy). If the two issues
policy 9 are addressed by ditferent parts of the program, or even by different

programs altogether, the software package is much easier to develop and
to adapt to particular needs

Example— Unix divides the graphics display mto
— X-Server :— which knows abowt hardware and Pprovides
a unified interface
< sesgion & window managers :~ Uges the interface provided LY Yhe X-Server
knows wnothing aliowt Jhe underlying, hardware

S0, the clevice drivers ave Puli«rffea
~ floppy disk drivers are poliey- Fvee - he rofe being showivg Hhe dickette as
Continvous afray of data blocks
Higher fevel system provide e abstrocion on whefher vsers can occess
0 who Can actess , toether via Flecystem or without, and other features

The programmer i3 alo f-ee to decide He underlying architecture of Hhe
device driver.
for example:-
if & driver will be used by multiple users , Hu prog7amner is +ree
fo ehoose twhat kind of Coneur fency to uge.

Splitling, the kernel
- (

In Linus kernel, seneral procsses wotk Jogefher fo atiend to different task
these kemnel 4ack conbe split into

2 Process mnaaemenf

» Mamory mandaement

* ?i\eqﬁemg

3 Device Control

* Nemorwv\?

Loadahle Modules:

One of the qood Features of Linux kernel ic to exlend Hhe rumkime with sel-
of kerne(features -

Thic mean you can extend the copalilities of Hhe kernel , as well a%

remove them, while e ystem s rwmu'vur

This pietes of Code Gre known as wodule
¥ ingmod - dyrami Unking 4o tha runtime progrom
s (mmod :- (‘(wnw'\vxT /unh‘nkimi%&z wodule

Clasg 6F devices and Modules

The wm} Linux freats a device diskn%wishzs info main ‘3—&»1]»9&;-

* char module

* blodk module
2 network module

Charactex dewice

A character (char) device is one that can be accessed as a stream of bytes (like a
file); a char driver is in charge of implementing this behavior. Such a driver usually
implements at least the open, close, read, and write system calls.

The text console (/dev/console) and the serial ports (/dev/ttySO and friends) are
examples of char devices, as they are well represented by the stream abstraction.
Char devices are accessed by means of filesystem nodes, such as /dev/ity1 and /dev/

IpO.

The only relevant difference between a char device and a regular file is that you can
always move back and forth in the regular file, whereas most char devices are just
data channels, which you can only access sequentially.

&{ﬂdl dQUiCe,g

Like char devices, block devices are accessed by filesystem nodes in the /dev directory. A
block device is a device (e.g., a disk) that can host a filesystem.

In most Unix systems, a block device can only handle 1/O operations that transfer one or
more whole blocks, which are usually 512 bytes (or a larger power of two) bytes in length.
Linux, instead, allows the application to read and write a block device like a char device—it
permits the transfer of any number of bytes at a time. As a result, block and char devices
differ only in the way data is managed internally by the kernel, and thus in the kernel/
driver software interface.

Like a char device, each block device is accessed through a filesystem node, and the dif-
ference between them is transparent to the user. Block drivers have a completely different
interface to the kernel than char drivers.

